Vătraiul lui Wittgenstein – reverie filosofică / Iulian Grigoriu

Se spune că Wittgenstein l-a amenințat pe Karl Popper cu vătraiul, atunci când cel din urmă expunea de la catedră concepția sa vizavi de „relație”. Parcă văd scena. Un amfiteatru cu bănci de lemn, încălzit de la o sobă cu lemne, Popper la tablă desenând un cerc. Scrie în el „Realitate”, duce o săgeată curbă spre alt cerc, în care scrie „Imagine” și explică faptul că între imagine și realitate se stabilește relația R de reprezentare.

Wittgenstein începe să se foiască în bancă, o idee i-a încolțit în minte. E vorba că cercul „Realitate” desenat de Popper este el însuși o „Imagine despre…”, deci relația este între două… imagini. Vasăzică schema generală a unei relații ține de realitate, așa cum susține Popper, ori de imagine?

Wittgenstein coboară la tablă ca să își expună punctul de vedere vădit deranjat că nu e înțeles de profesor, se întoarce spre sobă, bagă un lemn pe foc și se ridică agitându-se cu vătraiul în mână. La scena asta poate să apară și o problemă de interpretare: Wittgenstein doar gesticulează dirijându-și ideile, ori chiar devine agresiv față de Popper?

Adevărul e că mai vârstnicul filosof s-a înspăimântat și de ideile agresive, dar mai mult de vătrai. Îmi imaginez că explicația virulentă a lui Wittgenstein a fost că problema relației dintre realitate și imaginea ei se pune în cadrul imaginii, este apanajul imaginii, și conține o posibilitate a realității (realitatea ca posibilitate). Numai în virtutea imaginii se poate face apel la relația de reprezentare. Realitatea este ceva stabil care nu impune relația de reprezentare. Reprezentarea survine din perspectiva imaginii instabile în care se reprezintă stabilitatea realității. De unde știm că realitatea este stabilă? Atâta cât este, ca phainomen, știm asta de pe la Kant. Să admitem. Dar poate că în realitate, Wittgenstein s-a aprins când Popper ar fi zis: „pare evident că Relația e dependentă de realitate, căci dacă o șterg pe aceasta, nu mai avem nici imagine, nici relație între realitate și imaginea ei”. Publicul a murmurat aprobator. Wittgenstein ripostează, răsturnând argumentul prin întrebarea: „Dar cine arată Relația? Realitatea? Nu! Imaginea o arată (vocifera Wittgenstein agitând vătraiul), deci pot face abstracție de realitate, de cum e ea în sine (noumen) și atunci imaginea este temeiul relației dintre ea și realitate! Prin asta, e la mintea cocoșului că imaginile arată realitatea prin relația de reprezentare, nu realitatea arată imaginea (ceea ce ar fi absurd). Știm încă de la Schopenauer că lumea este reprezentarea mea, lumea nu ne apare ca lume.

Imaginea este legată transcendental de realitate, formează cu ea un tot mediat de relația de reprezentare dintre ele”.

În Tractatus Logico-Pilosophicus relația dintre ele ține de forma logică a gândirii, comună cu cea a realității (concepție kantian-transcendentală, proprie TLP, ulterior Wittgenstein va afișa o poziție catalogată drept mentalistă, intuiționistă, formalistă, chiar convenționalistă ori constructivistă și verificaționistă, pe toate acestea eu le numesc unitar „reprezentaționism”). Mai mult, dacă ar fi după Popper, orice imagine a realității ar trebui să fie adevărată, or faptul că imaginea poate fi adevărată sau falsă, arată că relația de reprezentare e apanajul imaginii, nu al realității, realitatea neputând să fie adevărată sau falsă față de imagine, pe când invers se poate. În genere, o relație se stabilește între două concepte, deci între două imagini (ale realității), deci nu se poate spune că a se află în relația R cu b, ci că există o anumită relație între a și b, relația R fiind o posibilitate și nu o necesitate.

Ei, Wittgenstein a mai pus mâna pe „vătrai” și cu altă ocazie, atunci când s-a făcut învățător în satul Puchberg de lângă Viena. Era după război, își publicase Tractatusul („În amintirea prietenului meu, DAVID H. PINSENT”), renunțase la averea părintească și la filosofie, încercând să se retragă discret din lume. Pe front dăduse dovadă de fapte de vitejie, fusese decorat pentru că își salvase camarazii cu riscul propriei vieți, era apăsat de moartea prietenului său David Pinsent care luptase în tabăra adversă. Oare la ce se gândea Wittgenstein, când apăsa pe trăgaciul mitralierei? Că o face în virtutea absurdului kierkegaardian, în numele prieteniei? Al datoriei? Ori că „ceva poate să se petreacă sau nu și tot restul să rămână același”?

Acum nu mai era cu tânărul profesor de matematici de la Cambridge, Pinsent, acolo, în Norvegia, ori în Skojlden in Sogn, satul sărăcăcios din Islanda, printre elfi și pescari, unde își construiseră o colibă ca să rezolve împreună problemele filosofiei. Filosofia se terminase. La școală copiii trebuiau să învețe să adune.

1  + 1 = ?

E simplu! Toată clasa părea că a înțeles, mai puțin, hai să le zicem, Hans și Fritz. O dată, de două, de nouă… Să încercăm cu mere.

Hans, tu ai un măr și Fritz tot un măr. Dacă îi dai un măr lui Fritz, câte mere va avea el?

Două!

Sehr gut!

Dar acum fiți atenți! Cât fac 1 + 1? Toată clasa știa, Hans și Fritz nu.

Să încercăm cu liniuțe, s-a gândit Wittgenstein. Copii, uitați ce desenez la  tablă:

) + ) = ? Toată clasa răspunse

) + ) = )), cu excepția lui Hans și Fritz. Azi așa, mâine așa… trec aproape 6 ani, în fiecare generație exista câte un Hans și un Fritz.

Wittgenstein și-a sărit din răbdări și după nenumărate exemple cu mere, bețișoare și liniuțe, nici una nici două, le-a aplicat câte o palmă zdravănă la fiecare:

„Eins plus eins ergibt zwei!”

Învățătorul Wittgenstein nu și-a dat imediat demisia. Regulile nu interziceau bătaia în școală, chiar dacă nu figura printre metodele didactice, era tacit acceptată ca o metodă empirică ce-și dovedise de-a lungul timpului eficacitatea. Pe unii îi trezea din adormirea minții, stimulându-i, pe alții îi liniștea, canalizându-le energiile. Pe Wittgenstein a început să-l frământe situația din alte pricini: ce nu e evident aici? Ce nu văd copiii în această situație? Ce învăț eu de aici? Într-o seară, Wittgenstein învățătorul s-a întors în clasă și a încercat să intre în pielea lui Fritz și Hans. Să cercetăm evidențele. Iată:

) + ) = evident )). Gut!

)) + ))) = ))))). Gut!

Dar ia să ne gândim noi. Dacă am avea de adunat 1943 cu 1858 de liniuțe? Mai este evidența vizibilă? Nu! Deci nu putem vorbi de evidență în genere. Nu avem o formă generală a evidenței, a numărului, ci cazuri particulare, care de la un punct încolo se pierd. Evidența nu e… evidentă! Când lucrăm cu cele mai simple numere, de fapt mângâiem pe creștet niște monștri! Asta e lecția învățată de la Hans și Fritz.

Wittgenstein și-a tras două palme și și-a dat imediat demisia din postul de învățător.

Articolul precedent
Fețele marxiste ale Noii Stângi / Bogdan Silion

Lasă un răspuns

Adresa ta de email nu va fi publicată. Câmpurile obligatorii sunt marcate cu *

Fill out this field
Fill out this field
Te rog introdu o adresă email validă.
You need to agree with the terms to proceed

Meniu